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In this paper, we report our tFold framework’s performance on the inter-residue
contact prediction task in the 14th Critical Assessment of protein Structure
Prediction (CASP14). Our tFold framework seamlessly combines both homol-
ogous sequences and structural decoys under an ultra-deep network architec-
ture. Squeeze-excitation and axial attention mechanisms are employed to effec-
tively capture inter-residue interactions. In CASP14, our best predictor achieves
41.78% in the averaged top-L precision for long-range contacts for all the 22
free-modeling (FM) targets, and ranked 1st among all the 60 participating teams.
The tFold web server is now freely available at: https://drug.ai.tencent.
com/console/en/tfold.
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1 | INTRODUCTION
Accurate inter-residue distance/contact prediction has become the focal research point in the realm of de novo protein tertiary structure
prediction since its significant success in CASP13 [1]. Emerging predictors such as AlphaFold [2], CONFOLD2 [3], DMPfold [4] and trRosetta
[5] put great emphasize on distance prediction accuracy, which instantly promotes precision of predicted 3D structures.

Early attempts for inter-residue contact prediction involve manually-designed co-evolution features from homologous sequences, e.g.
GREMLIN [6], PSICOV [7], and CCMpred [8]. Specifically, GREMLIN [6] adopts a Markov random field model to capture the conservation
and co-evolution in a multiple sequence alignment, while CCMpred [8] provides a highly-optimized pseudo-likelihood maximization (PLM)
implementation for contact prediction. Inspired by deep network’s overwhelming success in various domains, most of recent methods adopt
convolutional neural networks (CNNs) for end-to-end learning from multiple-sequence alignment (MSA) to inter-residue contact/distance
prediction [5, 9, 10, 11, 12]. In addition toMSA based features, RaptorX [13] first described how to integrate template information with deep
learning to improve contact/distance prediction. The prediction task is formulated as a pixel-wise regression/classification problem, where
residual connection [14] and dilated convolution [15] are often utilized to increase the model capacity for distance prediction. However,
there are still much left to explore on designing more effective network architectures for inter-residue distance prediction.

In this work, we propose a novel framework, namely tFold, to seamlessly integrate diverse information from homologous sequences and
structural decoys for inter-residue distance prediction. Specifically, we collect structural decoys via template search and decoy generation
with various protein folding methods. Such structural decoys reveal possible inter-residue interactions directly in the 3D conformation space,
which is complementary to the co-evolution information in homologous sequences. The tFold framework consists of two sub-networks,
tFold-DistNet for MSA-based distance prediction and tFold-RefineNet for refining distance predictions with structural decoys. We construct

*Equally contributing authors.

1



2 Shen et al.
these networks with squeeze-and-excitation residual units [16] as basic building blocks, and axial attention layers [17] to better capture
the global information for long-range interactions. The squeeze-and-excitation module allows more efficient communication among all the
feature map channels, which is critical in constructing an ultra-deep network. The axial attention mechanism, allowing each residue to
adaptively attend to all the other residues, circumvents the local receptive field limitation of standard convolution layers. The network is
trained under a progressive learning manner for efficient optimization. Furthermore, we present a “cluster-and-rank” approach to fuse inter-
residue distance predictions derived from different MSA features, automatically filtering out low-quality ones for more effective ensemble.
With a pre-trained fold classification network, all the candidate inter-residue distance predictions are firstly clustered into groups based on
the pairwise similarity, and then ranked by a probability distribution based quality assessment metrics to determine the optimal one.

We summarize our main contributions in three folds:
• We propose a unified framework to combine both homologous sequences and structural decoys for inter-residue distance prediction.
• We design an ultra-deep network architecture with squeeze-and-excitation and axial attention mechanisms, and present a progressive

learning method for efficient training.
• We present a “cluster-and-rank” strategy for adaptive fusion of inter-residue distance predictions from various sequence databases and

sensitivity thresholds.
We entered the contact prediction track in CASP141 with six variants of our tFold framework (tFold, tFold-IDT, tFold-CaT, tFold_human,

tFold-IDT_human, and tFold-CaT_human). Among them, tFold-CaT_human ranked 1st among 60 teams, with the averaged top-L long-range
contact prediction precision of 0.41783 for 22 free-modeling (FM) domains. In this paper, we present technical details and extensive evalu-
ation results of our tFold framework, and discuss what went well/wrong in CASP14.

2 | MATERIALS AND METHODS
2.1 | The tFold Distance Prediction Pipeline

F IGURE 1 The overall architecture of tFold distance prediction pipeline.
We illustrate the overall architecture of our proposed tFold framework in Figure 1. The tFold framework consists of two sub-networks,

where tFold-DistNet produces initial inter-residue distance and orientation predictions fromMSA features, and tFold-RefineNet further refine
such predictions assisted by structural decoys.

Specifically, in the first phase, tFold-DistNet accepts a set of MSAs searched against various sequence databases, and transforms them
into following features: PSSM (Position Specific Scoring Matrix) of size L ×21 and MRF (Markov Random Fields) [6] of size L ×L ×441, where
L is the input sequence length. The model produces four different histograms, one for distance and three for orientations. These histograms

1CASP14 contact prediction results: https://predictioncenter.org/casp14/zscores_rrc.cgi
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F IGURE 2 The SuperBlock’s architecture, which consists of five SEResBlock units with gradually increased dilation rates (in 3 × 3
convolutional layers) and one axial attention module.

.

are identical with those in trRosetta [5]:
• di j : distance defined by C i

β
-C j

β
atoms

• ωi j : dihedral angle defined by C iα -C iβ -C jβ -C jα atoms
• θi j : dihedral angle defined by N i -C iα -C iβ -C jβ atoms
• ϕi j : plane angle defined by C iα -C iβ -C jβ atoms
where N i , C iα , and C iβ denote the i -th residue’s N , Cα , and Cβ atoms, respectively. trRosetta[5] pointed it out that the introduction of
three types of orientations are beneficial to the model training, as they provide auxiliary supervision from complementary aspects. During
the second phase, tFold-RefineNet takes MSA features and structural decoys as additional inputs to further refine tFold-DistNet’s predictions.
Similarly, we cooperate auxiliary supervision, i.e. per-residue lDDT scores [18] and per-decoy C i

β
-C j

β
distance deviations, to better guide the

refinement of inter-residue distance and orientation predictions.
We highlight the tFold framework in two aspects: 1) tFold-DistNet and tFold-RefineNet share the same network building block, only

distinguished by input features, output predictions, and training/inference protocols; and 2) tFold-RefineNet accepts structure decoys from a
wide variety of sources, including partial structural templates from PDB and 3D structural decoys generated from protein folding algorithms.
tFold-RefineNet is robust with some low-quality decoys (lDDT < 0.4), i.e. its refinement results are boosted even if input decoys contain
misleading inter-residue interactions.

2.2 | Network Architecture
Both tFold-DistNet and tFold-RefineNet are constructed with the same network building block, namely SuperBlock, which consists of multiple
SEResBlock units followed by one axial attention module. We visualize the SuperBlock’s architecture in Figure 2.

Each SEResBlock [16] involves three convolutional layers forming a bottleneck structure for computational efficiency and one squeeze-
and-excitation module to capture inter-channel dependencies. Dilated convolution is adopted to enlarge the receptive field under the same
computational complexity, which better captures long-range inter-residue interactions. Nevertheless, dilated convolution only allows square-
shaped receptive fields, which may not be optimal for modeling one residue’s interaction with all the other ones. Therefore, we employ axial
attention [19, 20, 17] at the end of each SuperBlock. Each axial attention module consists of two orthogonal axial attention layers and one
criss-cross attention layer, which is capable of formulating non-local dependencies for each residue.

The main branch of tFold-DistNet model is composed of 52 SuperBlocks, as we empirically find that such depth is indeed beneficial
for fully exploitation of MSA features. We discover that different sequence databases, e.g. UniClust30 [21], UniRef90 [22], and NR90/70
[23], lead to highly diverse MSA features. Therefore, for each sequence database, we adopt 5 additional SuperBlocks to pre-process its
corresponding PSSM and MRF features before concatenating all the resulting feature maps together, and add a by-passing aggregation
branch for multi-layer fusion, as depicted in Figure 1.

We first developed tFold-DistNet and designed SuperBlock for distance prediction. After tFold-DistNet was completed, the SuperBlock
was used as the building block of tFold-RefineNet. For computational efficiency, multi branch fusion was not used in tFold-RefineNet and it
is a relatively shallow network (16 SuperBlocks). Multiple structural decoys are fed into tFold-RefineNet, after extracting their inter-residue
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distance and orientation as input features. tFold-RefineNet is expected to refine tFold-DistNet’s distance and orientation predictions based on
additional structural information embedded in these decoys. Furthermore, we use per-decoy local lDDT scores and distance deviations as
auxiliary supervision to aid the model training. The distance deviation is defined as the difference in C i

β
-C j

β
distance, uniformly discretized

into 20 bins (-10Å to 10Å). Thus, tFold-RefineNet is aware of the quality of each input decoy, and therefore is more robust with bad decoys.

2.3 | Training Protocol
It often takes huge amount of computational resources and careful engineering to train deep learning models, especially for ultra-deep ones.
To overcome such difficulty, we adopt the following progressive training protocol:

1. Build an initial shallow and train it until convergence.
2. Extend the model with more SuperBlocks with identity mapping initialization [24].
3. Train the extended model with a smaller learning rate until convergence.
4. Repeat step 2 & 3 until model accuracy no longer improves.

The above protocol starts by training an initial model, and progressively improves the accuracy by addingmore SuperBlocks. The extended
model is relatively faster to converge, as only newly added SuperBlock are optimized. Compared with traditional approaches that train the
entire model from scratch, our approach is more efficient and easier to train such ultra-deep models.

We trained all the models on a single Nvidia DGX-2 workstation equipped with 16 V100 GPUs. The initial tFold-DistNet consists of 16
SuperBlocks and is gradually extended to 52 SuperBlocks (16-24-32-40-48-52). The initial model is trained for 40 epochs with Adam optimizer
(learning rate: 1e-4), and fine-tuned for 10 epochs (learning rate: 5e-5) whenever extra SuperBlocks are added. Similarly, the tFold-RefineNet
model starts with 8 SuperBlocks and stops at 16 SuperBlocks (8-12-16). The initial model is trained for 20 epochs with Adam (learning rate:
1e-4), and further fine-tuned for 5 epochs (learning rate: 5e-5) whenever the network depth grows. The difference in tFold-DistNet’s and
tFold-RefineNet’s network depth and number of training epochs are mainly due to their respective task difficulty and data availability. The
networks were always trained on 128 × 128 regions of the distance matrix, which reduces the GPU memory consumption to allow deeper
networks to be trained

For CASP14, the training subset is created from PDB40-20200301 database, containing 36,505 structures. We randomly select 1,000
structures from it to constitute the test subset, in addition to 31 CASP13 FM structures (domain-level) and 141 CAMEO structures (chain-
level). We collect structural decoys for tFold-RefineNet from: 1) CNFpred’s [25] top-10 decoys for the CATH database (version: 20180316);
and 2) all the servers’ submissions for 879 CAMEO [26] targets during 20190511-20200502. As different CAMEO servers produce highly
diverse structural decoys for the same target, the tFold-RefineNet model is more robust with input decoys’ quality.

2.4 | Inference Protocol
The inference process of our tFold framework mainly consists of following procedures:

1. Search through sequence databases to generate MSAs.
2. Predict inter-residue distance and orientations with tFold-DistNet.
3. Fuse distance and orientation predictions for further refinement.
4. Generate/collect structural decoys for refinement with tFold-RefineNet.
5. Refine distance and orientation predictions with tFold-RefineNet.
6. Fuse distance and orientation predictions for final submissions.

For each query sequence, we firstly search it against UniRef30 (2020-03), UniRef90 (2020-04), and NCBI-nr (2020-04) databases with
HHSuite [27], HMMER [28], and BLAST [29], respectively. The resulting MSAmay be further used to search against the MetaClust50 (2018-
06) database with HHMER if its NEFF (Normalized number of EFFective sequences) index is lower than the threshold. By varying MSA
search hyper-parameters (E-value and number of iterations) for different databases, we obtain a total of 12 MSAs or 83 MSAs. tFold-DistNet
is employed to predict inter-residue distance and orientations for each MSA, following by a “cluster-and-rank” strategy for multi-MSA fusion
(as detailed in Appendix A). Top-ranked predictions are then further refined by tFold-RefineNet, using structural decoys generated by our
in-house protein folding pipeline and other servers’ submissions (only available for human groups). The refined predictions are again fused
with the “cluster-and-rank” strategy to obtain final submissions. We registered 6 contact prediction servers for CASP14, as listed in 1, with
different MSA search strategies and structural decoys.
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TABLE 1 Inference protocols of tFold predictors in CASP14.
Predictor Model Input MSAs Input Decoys
tFold tFold-DistNet 12 MSA None
tFold-IDT tFold-DistNet + tFold-RefineNet 12 MSA tFold server decoys (TBM)
tFold-CaT tFold-DistNet 83 MSA None
tFold_human tFold-DistNet + tFold-RefineNet 12 MSA tFold server decoys (TBM + FM)
tFold-IDT_human tFold-DistNet + tFold-RefineNet 12 MSA All server decoys
tFold-CaT_human tFold-DistNet + tFold-RefineNet 83 MSA All server decoys

TABLE 2 tFold predictors’ top-L/k precision for contact prediction on CASP14 FM targets.
Short Range Medium + Long Range Long Range

Method L L/2 L/5 L L/2 L/5 L L/2 L/5
tFold 24.56 39.84 61.79 43.41 55.87 66.99 35.13 47.74 57.96
tFold-IDT 25.02 41.05 64.15 45.63 58.33 68.08 36.52 49.11 60.93
tFold-CaT 24.90 41.50 65.23 46.23 59.36 69.49 37.11 50.35 61.22
tFold_human 25.40 42.31 64.73 47.57 59.68 70.49 38.06 51.21 61.66
tFold-IDT_human 25.86 42.89 66.29 49.93 61.81 73.03 40.50 52.87 64.75
tFold-CaT_human 25.77 42.84 66.30 50.81 63.09 73.89 41.78 55.64 66.55

3 | RESULTS
3.1 | Contact Prediction Accuracy in CASP14
CASP14 involves a total of 68 target proteins, officially divided into 107 structural domains. In CASP14’s contact prediction track, 60
participanting teams (30 server groups and 30 human groups) submitted predictions for 15 TBM/FM and 22 FM domains, which were then
evaluated over various metrics.

Here, we follow the widely-used evaluation protocol for quantitative comparison of various contact prediction methods. Two residues
are “in-contact” if the distance between their Cβ atoms is lower than 8Å. Based on the sequence separation, contacts are further cate-
gorized into short-range (6-11), medium-range (12-23), and long-range (over 24) ones. Previous studies [30, 31] have demonstrated that
long-range contacts are most informative and critical for subsequent protein structure optimization procedures. In Table 2, we report the
short/medium+long/long-range contact prediction accuracy of all the our tFold predictors on 22 FM domains, measured by the top-L/k
precision.

As the baseline method, tFold only employs tFold-DistNet with 12 MSAs and no structural decoys, and achieves the top-L long-range
precision of 35.13%. tFold-IDT is intended to integrate the template information into the MSA-based contact prediction process. Although
only a limited number of templates can be found for FM domains, tFold-IDT still consistently improves the top-L long-range precision to
36.52%. On the other aspect, tFold-CaT’s 37.11% top-L long-range precision indicates that using more diverse MSA features (83 MSAs vs.
12 MSAs) is also critical in improving the contact prediction accuracy.

For three human group predictors, tFold_human improves over tFold-IDT by further cooperating FM-based folding results by the tFold
server, although no human-group-only information is used in this predictor. The improvement of tFold-IDT_human over tFold_human (40.50%
vs. 38.06%) further indicates that involving more structural decoys, regardless of their quality, is beneficial for improving the contact pre-
diction accuracy. Our best performing predictor, tFold-CaT_human, integrates the above two effective strategies (more diverse MSAs and
structural decoys). It achieves the top-L long-range precision of 41.78%, and ranks 1st among all the 60 predictors in CASP14.

It is worthy noting that many other top-ranked predictors in contact prediction and 3D structure prediction have utilized the BFD
database [32] for MSA search, while we did not use during CASP14. Please refer to Section 3.3 for more detailed analysis on how the BFD
database affects the contact prediction accuracy.

3.2 | Ablation Study on tFold-DistNet
We further conduct the ablation study on several variants of the tFold-DistNet model, to validate each component’s effectiveness in the
contact prediction accuracy. The architectural details of these models are as follows:

Baseline: Baseline model is a similar network architecture with trRosetta[5]. The model consists of 80 SEResBlocks with 128 channels,
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cycling through dilations 1, 2, 4, 8, 16. The baseline model takes MRF features from single MSA as input. During inference time, predictions
are perfromed using single MSA.

Baseline w/multi branch: We add multi branch fusion module to the baseline model. For MSAs frommultipule databases, MRF features
are fed into the network at the same time.

Baseline w/ axial attention: We add axial attention module to the baseline model. After every cycle of dilation rate, an axial attention
module is added after 2D convolution.

tFold-DistNet 16 blk: We add both multi branch fusion module and axial attention module to the baseline model. It is the lightweight
version of tFold-DistNet with 16 SuperBlocks.

tFold-DistNet 52 blk: The full ultra deep version of tFold-DistNet with 52 SuperBlocks trained using the progressive training protocol
described in Section 2.3.

In Figure 3, we report the top-L and top-L/5 precision for medium- and long-range contacts on CASP14 FM targets. We start with
the baseline model described above, which has the same number of convolution layers as 16 SuperBlocks. By introducing the multi-branch
architecture to fuse MSA features generated by different sequence databases, the top-L precision is improved from 32.42% to 34.44%. The
axial attention module is able to effectively capture long range relations, which is very important for inter-residue geometry predictions.
Adding axial attention after 2D convolution gave a clear improvement in contact accuracy (36.42% vs. 32.42%). By combining these two
components together, “tFold-DistNet (16-blk)” achieves the top-L precision of 39.34%, which is significantly better than the baseline. Such
improvement can be further enlarged by using more SuperBlocks (16→ 52), which leads to a boost in the top-L precision from 39.34% to
43.41%. This indicates that deeper networks are indeed more powerful and expressive for the inter-residue distance prediction problem.

F IGURE 3 Comparison on the top-L/k precison for medium+long-range contacts on CASP14 FM targets.

3.3 | MSA Quality’s Impact on Contact Predictions
As the fundamental input features for inter-residue contact/distance predictions, multiple sequence alignment’s quality directly affects the
prediction accuracy. Particularly, top-ranked structure prediction teams in CASP14, including AlphaFold2 [33], BAKER [34], and ZHANG [35],
used large-scale metagenomics databases for MSA search, such as BFD [32], MGnify [36], and JGI [23]. However, during CASP14, the tFold
framework only used MetaClust50 [37], which is a relatively small metagenomics database, in conjunction with UniClust30 [21], UniRef90
[22], and NR90/NR70 [23]. In the section, we replay our tFold framework with the BFD database enabled, to quantitatively measure how
the MSA quality affects the contact prediction accuracy.

In Figure 4, we present the per-target top-L precision comparison for the tFold framework, with or without the BFD database. Although
tFold is the simplest predictor as listed in Table 1, using BFD-generatedMSA features leads to a huge boost in the contact prediction accuracy
(44.77% vs. 35.13%), even outperforms the best predictors (tFold-CaT_human) in CASP14 by 2.99%. Further improvement can be observed
by cooperating more structural decoys where tFold-Cat_human-BFD scores 51.40%, 9.62% higher than tFold-CaT_human. For targets with
few homologous sequences (T1031-D1, T1039-D1, T1042-D1, T1074-D1, and T1096-D2), BFD dataset can help to find more sequences
and distance prediction is significantly improved. However, for targets T1090-D1 and T1093-D3, high quality MSA can be aquired without
BFD, adding metegenomic databases for MSA construction can even negatively impact precision.

3.4 | Decoy Quality’s Impact on Contact Predictions
The tFold-RefineNetmodel takes as inputs structural decoys of unknown quality. A natural question arises: how the structural decoy’s quality
affects the contact prediction accuracy? In this section, we analyze the correlation between input structural decoy’s quality and relative
improvement in the contact prediction accuracy.
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F IGURE 4 Comparison on the top-L precision for long-range contacts on CASP14 FM targets, with or without the BFD database being
used.

For 20 chain-level FM targets in CASP14, we collect a total of 1,339 decoys from server submissions, whose lDDT scores range from
0.190 to 0.647. In Figure 5, we visualize the relative improvement in the top-L precision for medium- and long-range contacts for each
structural decoy. Most of the dots are above the dashed gray line, indicating that refining contact predictions with the additional structural
decoy is indeed beneficial. As is shown in Figure 5, tFold-RefineNet is robust with some low-quality input decoys (lDDT < 0.4). However,
there are still some cases where the model failed to refine distance prediction. Performance of the model can be improved by discarding low
quality decoys. In this case, an accurate accuracy estimation model is needed to filter the input decoys.

Additionally, we report the per-target Pearson correlation coefficient in Table S1. The overall Pearson correlation coefficient is 0.6718
(averaged across all targets), suggesting that better structural decoys leads to larger boost in the contact prediction accuracy. For FM
targets (in the left column), we observe strong positive correlation for most targets (Pearson correlation coefficient over 0.5) with only a few
exceptions (T1029, T1047s1, T1049, and T1090). For non-FM targets (in the right column), the performances are more stable (all non-FM
targets have Pearson correlation coefficients over 0.4) because of higher quality MSAs.

Take T1029 as an example, its top-L precision shows negligible improvements when structural decoys are used. The main reason is that
for T1029, we could not find sufficient homologous sequences during MSA search, while our tFold framework still heavily depends on MSA
features.

F IGURE 5 Visualization of decoy quality’s impact on the top-L precision for medium- and long-range contacts.
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F IGURE 6 Per-target visualization of decoy quality’s impact on the top-L precision for medium- and long-range contacts.

4 | DISCUSSION AND CONCLUSION
4.1 | Case Study: T1043
T1043, which is a part of H1044 (2,180 residues), is an extremely hard target in CASP14. No homologous sequences can be found with the
defaultMSA search protocol in tFold. Therefore, we used the full sequence ofH1044 forMSA search and then cropped out the corresponding
148 residues for T1043. As depicted in Figure S2, the resulting MSA’s NEFF index improves significantly, among which the highest NEFF
achieves 23.016. We feed these enhancedMSAs into our 6 tFold predictors, and the best-performing one, tFold-CaT_human, achieves 47.30%
top-L precision for long-range contacts. At the same time, the best submission from other groups only reaches 9.4% top-L precision, which is
notably lower than all of tFold predictors. However, whenwe apply the similar strategy on T1039 and T1040, as they are also a sub-sequence
of H1044, no similar phenomenon is observed. This indicates that MSA search with an extended sequence could be sometimes effective
in improving the MSA quality, but the inconsistent improvement for different targets may need further investigation. Lastly, we would like
to note that due to lack of both homologous templates and high-quality structural decoys, the refinement with tFold-RefineNet did not work
for T1043.

4.2 | Case Study: T1074
As mentioned in Section 3.3, the contact prediction accuracy of T1074 can be dramatically boosted once the BFD database is used. Since
we failed to use the BFD database during CASP14, while most of top-ranked contact/structure prediction teams did, our best server-group
submission for this target only achieves 35.61% (tFold-CaT), ranked 7th out of 60 teams. Meanwhile, Yang-Server and TripletRes teams scored
41.67% and 38.60% top-L precision for long-range contacts, respectively. Therefore, it is quite likely that other servers’ structure prediction
submissions reveal some BFD-exclusive inter-residue interactions that are not observed in our server-group submissions.

With this regard, tFold-RefineNet played a critical role in improving the contact prediction accuracy, as structural decoys submitted
by other teams could be cooperated. We used 95 decoys from server submissions, including aforementioned teams’ structure prediction
counterparts. From Figure 5, we observe that the contact prediction accuracy can be improved for most of structural decoys. On the
other hand, as visualized in Figure 7, tFold-CaT_human correctly suppressed false-positive contacts in the red bounding-box, and promoted
false-negative contacts in the yellow bounding-box. As a result, tFold-CaT_human (46.97%) not only outperformed our MSA-only predictor
(tFold-CaT: 35.61%), but also surpassed the best server-group submission (Yang-Server: 41.67%). This indicates that our tFold-RefineNetmodel
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is indeed capable of improving initial contact predictions with additional information embedded in structure decoys.

F IGURE 7 T1074-D1: tFold, tFold-CaT, and tFold-CaT_human’s contact predictions and folding results.

4.3 | Conclusion
In this paper, we present our tFold framework, which ranked 1st in the contact prediction track in CASP14. Both homologous sequences and
structural decoys are exploited under the same ultra-deep network, which can be efficiently trained in a progressive learning manner. We
adopt squeeze-excitation and axial attention mechanisms to better formulate inter-residue interactions, and propose a “cluster-and-rank”
strategy for effective multi-MSA fusion.

The most important lesson we learnt from CASP14 is that the quality of multiple sequence alignment is critical to contact prediction.
Modern metagenomics databases, e.g. BFD [32], are almost indispensable for those targets with limited number of homologous sequences.
We failed to utilize the BFD database during the CASP14 competition, but later experimental results indicate that this could lead to 9-10%
improvement in the top-L precision. On the other hand, this also raises a important question to future researches: how to alleviate the
dependency on multiple sequence alignment for contact / structure prediction methods.

In summary, the main features of our proposed tFold framework include: 1) ultra-deep networks efficiently optimized via progressive
training; 2) integration of homologous sequences and structural decoys with tFold-RefineNet; and 3) adaptive fusion of various candidate
inter-residue distance predictions. The joint utilization of above three components leads to the SOTA performance in the CASP14 contact
prediction.

references
[1] Cheng J, Choe MH, Elofsson A, Han KS, Hou J, Maghrabi AH, et al. Estimation of model accuracy in CASP13. Proteins: Structure, Function, and

Bioinformatics 2019;87(12):1361–1377.
[2] AlQuraishi M. AlphaFold at CASP13. Bioinformatics 2019;35(22):4862–4865.
[3] Adhikari B, Cheng J. CONFOLD2: improved contact-driven ab initio protein structure modeling. BMC bioinformatics 2018;19(1):1–5.
[4] Greener JG, Kandathil SM, JonesDT. Deep learning extends de novo proteinmodelling coverage of genomes using iteratively predicted structural

constraints. Nature communications 2019;10(1):1–13.
[5] Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved protein structure prediction using predicted interresidue orientations.

Proceedings of the National Academy of Sciences 2020;117(3):1496–1503.
[6] KamisettyH,Ovchinnikov S, BakerD. Assessing the utility of coevolution-based residue–residue contact predictions in a sequence-and structure-

rich era. Proceedings of the National Academy of Sciences 2013;110(39):15674–15679.
[7] Jones DT, Buchan DW, Cozzetto D, Pontil M. PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large

multiple sequence alignments. Bioinformatics 2012;28(2):184–190.
[8] Seemayer S, Gruber M, Söding J. CCMpred—fast and precise prediction of protein residue–residue contacts from correlated mutations. Bioin-

formatics 2014;30(21):3128–3130.
[9] Wang S, Sun S, Li Z, Zhang R, Xu J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS computational

biology 2017;13(1):e1005324.



10 Shen et al.
[10] Zhu J, Wang S, Bu D, Xu J. Protein threading using residue co-variation and deep learning. Bioinformatics 2018;34(13):i263–i273.
[11] Xu J. Distance-based protein folding powered by deep learning. Proceedings of the National Academy of Sciences 2019;116(34):16856–16865.
[12] Li Y, Hu J, Zhang C, Yu DJ, Zhang Y. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural

networks. Bioinformatics 2019;35(22):4647–4655.
[13] Xu J, Wang S. Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins: Structure, Function, and Bioinfor-

matics 2019;87(12):1069–1081.
[14] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and

pattern recognition; 2016. p. 770–778.
[15] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. In: International conference on learning representations; 2016. .
[16] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition;

2018. p. 7132–7141.
[17] Wang H, Zhu Y, Green B, Adam H, Yuille A, Chen LC. Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In: European

Conference on Computer Vision Springer; 2020. p. 108–126.
[18] Mariani V, Biasini M, Barbato A, Schwede T. lDDT: a local superposition-free score for comparing protein structures and models using distance

difference tests. Bioinformatics 2013;29(21):2722–2728.
[19] Ho J, Kalchbrenner N, Weissenborn D, Salimans T. Axial attention in multidimensional transformers. arXiv preprint arXiv:191212180 2019;.
[20] Huang Z, Wang X, Huang L, Huang C, Wei Y, Liu W. Ccnet: Criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF

International Conference on Computer Vision; 2019. p. 603–612.
[21] Mirdita M, von den Driesch L, Galiez C, Martin MJ, Söding J, Steinegger M. Uniclust databases of clustered and deeply annotated protein

sequences and alignments. Nucleic acids research 2017;45(D1):D170–D176.
[22] Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, Consortium U. UniRef clusters: a comprehensive and scalable alternative for improving

sequence similarity searches. Bioinformatics 2015;31(6):926–932.
[23] Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, et al. The genome portal of the department of energy joint genome

institute. Nucleic acids research 2012;40(D1):D26–D32.
[24] Bachlechner T, Majumder BP, Mao HH, Cottrell GW, McAuley J. Rezero is all you need: Fast convergence at large depth. arXiv preprint

arXiv:200304887 2020;.
[25] Ma J, Peng J, Wang S, Xu J. A conditional neural fields model for protein threading. Bioinformatics 2012;28(12):i59–i66.
[26] Haas J, Barbato A, Behringer D, Studer G, Roth S, Bertoni M, et al. Continuous Automated Model EvaluatiOn (CAMEO) complementing the

critical assessment of structure prediction in CASP12. Proteins: Structure, Function, and Bioinformatics 2018;86:387–398.
[27] Steinegger M, Meier M, Mirdita M, Vöhringer H, Haunsberger SJ, Söding J. HH-suite3 for fast remote homology detection and deep protein

annotation. BMC bioinformatics 2019;20(1):1–15.
[28] Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic acids research 2011;39(suppl_2):W29–

W37.
[29] Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs. Nucleic acids research 1997;25(17):3389–3402.
[30] Schaarschmidt J, Monastyrskyy B, Kryshtafovych A, Bonvin AM. Assessment of contact predictions in CASP12: co-evolution and deep learning

coming of age. Proteins: Structure, Function, and Bioinformatics 2018;86:51–66.
[31] Shrestha R, Fajardo E, Gil N, Fidelis K, Kryshtafovych A,Monastyrskyy B, et al. Assessing the accuracy of contact predictions in CASP13. Proteins:

Structure, Function, and Bioinformatics 2019;87(12):1058–1068.
[32] Steinegger M, Mirdita M, Söding J. Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold. Nature

methods 2019;16(7):603–606.
[33] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Tunyasuvunakool K, et al. High Accuracy Protein Structure Prediction Using Deep Learning.

In: Fourteenth Critical Assessment of Techniques for Protein Structure Prediction (Abstract Book); 2020. p. 22–24.
[34] Anishchenko I, Baek M, Park H, Dauparas J, Hiranuma N, Mansoor S, et al. Protein structure prediction guided by predicted inter-residue

geometries. In: Fourteenth Critical Assessment of Techniques for Protein Structure Prediction (Abstract Book); 2020. p. 30–31.
[35] Li Y, Zheng W, Zhang C, Bell E, Huang X, Pearce R, et al. Protein 3D Structure Prediction by Zhang Human Group in CASP14. In: Fourteenth

Critical Assessment of Techniques for Protein Structure Prediction (Abstract Book); 2020. p. 328–330.



Shen et al. 11
[36] Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, et al. MGnify: the microbiome analysis resource in 2020. Nucleic acids

research 2020;48(D1):D570–D578.

[37] Steinegger M, Söding J. Clustering huge protein sequence sets in linear time. Nature communications 2018;9(1):1–8.

[38] Sillitoe I, Bordin N, Dawson N, Waman VP, Ashford P, Scholes HM, et al. CATH: increased structural coverage of functional space. Nucleic Acids
Research 2021;49(D1):D266–D273.

Appendix A: Additional Figures and Tables

F IGURE S1 The “cluster-and-rank” strategy for multi-MSA fusion of distance predictions.

F IGURE S2 The NEFF index for all the 83 MSAs generated for T1043.

Appendix B: Neural network hyperparameters
| SuperBlock

• 5 SEResBlock blocks with 128 channels, cycling through dilations 1, 2, 4, 8, 16
• Nonlinearity: ELU
• The number of attention heads and head dims for two orthogonal axial attention layer: 8 and 64
• The number of attention heads and head dims for criss cross attention layer: 8 and 64
• 0.90 dropout keep probability
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| tFold-DistNet

• Three branch fusion with 52 SuperBlocks
• Batch of 1 crops on each of 16 GPU workers
• Weight decay: 0.0001
• Progressive training with 16-24-32-40-48-52 SuperBlocks

| tFold-RefineNet

• Single branch with 16 SuperBlocks
• Batch of 1 crops on each of 16 GPU workers.
• Weight decay: 0.0001
• Auxiliary loss weights: deviation prediction = 1.0, lddt prediction = 10.0
• Progressive training with 8-12-16 SuperBlocks

Appendix C: The “Cluster-and-Rank” Strategy for Multi-MSA Fusion
The “cluster-and-rank” strategy works by firstly grouping distance predictions into clusters, and then select top-ranked ones from them. To
define the pairwise similarity between distance predictions, another convolutional network is trained to predict the fold class from distance
predictions, following theCATH fold definition [38]. Afterwards, we extract the final layer’s activations as the embedding vector, and compute
the cosine similarity between two embedding vectors for hierarchical clustering. Isolated clusters with only one member are filtered out.
Subsequently, we calculate the averaged distance prediction of each cluster and then rank the results to identify the best one for the final
submission.

We rank distance predictions according to a probability distribution based quality assessment metric, which is defined as the AUC score
of distance distribution’s standard deviation vs. coverage ratio of inter-residue pairs. This metric aims at measuring the concentration degree
of predicted probabilistic distributions. The idea is based on the assumption that when MSA’s co-evolution information strongly indicates
that two residues are closely-related, then the predictor should be highly confident in its predictions. This corresponds to a single high peak
in predicted probabilities. In contrast, if such co-evolution information does not exist in the MSA data, then the predictor tends to produce
less concentrated probabilistic distributions since the confidence is lower.

For the distance prediction for each inter-residue pair, we compute its standard deviation as:
µd ,i ,j =

∑Kd

k=1
p
(k )
d ,i ,j
· dk

σd ,i ,j =

√∑Kd

k=1
p
(k )
d ,i ,j
·
(
dk − µd ,i ,j

)2 (1)

where dk is the average distance value for the k -th histogram bin, µd ,i ,j is the expected distance value, and σd ,i ,j is the standard deviation of
predicted distance distribution.

Furthermore, we design a normalization routine to ensure that this quantitative metric falls into range [0, 1] for any distance predictions.
We introduce a hyper-parameter, σmax , as the maximal possible value of standard deviations. It is easy to prove that with each histogram
bin’s distance value given (d1 < d2 < · · · < dKd ), the maximal possible standard deviation is:

σmax =
dKd − d1

2
(2)

With the maximal possible standard deviation given, we compute the AUC (area under curve) score for the (σ, r ) curve, where r is the ratio
of inter-residue pairs whose standard deviation σd ,i ,j is smaller than the threshold σ ∈ [0,σmax ]. The AUC score is guaranteed to take values
ranging from 0 and 1, and the prefect distance prediction (one-hot prediction for each inter-residue pair) indeed achieves the maximal AUC
score, i.e. 1. In practice, instead of enumerating every possible threshold, we uniformly select a fixed number of thresholds (e.g. 1000) and
then compute the approximated AUC score. This offers a good balance between approximation precision and computational efficiency.

Appendix D: Normalized Number of EFFective sequences (NeFF)
We take a commonly adopted approach to evaluate the MSA depth: normalized number of effective sequences (NeFF):

Nf =
1
√
L

N∑
n=1

1

1 +
∑N
m=1,m,n 1

(
Sm,n ≥ 0.8

) (3)
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where L is the length of query sequence, N is the number of sequences in the MSA, Sm,n is the sequence identity between the m-th and
n-th sequences, and 1 ( ·) is the indicator function, i.e. 1 (

Sm,n ≥ 0.8
) equals to 1 if Sm,n ≥ 0.8, and zero otherwise.
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TABLE S1 Comparison on the Pearson correlation coefficient for FM (left) and non-FM (right) targets between structural decoys’ lDDT
scores and relative improvement in the top-L precision for medium- and long-range contacts. The baseline top-L precision is also reported,
which corresponds to contact predictions without any structural decoys.
Target Top-L Prec. # of Decoys Pearson CC Target Top-L Prec. # of Decoys Pearson CC
T1027 0.2679 56 0.7896 T1026 0.5697 60 0.9332
T1029 0.0320 61 -0.0347 T1030 0.4322 63 0.8198
T1031 0.0211 61 0.8342 T1032 0.4049 68 0.8106
T1033 0.1600 58 0.5310 T1034 0.9743 56 0.4069
T1037 0.4455 60 0.9338 T1035 0.2941 62 0.9355
T1038 0.4221 61 0.7751 T1045s2 0.7861 66 0.4157
T1039 0.0683 65 0.8583 T1046s1 0.5945 68 0.6865
T1040 0.0692 68 0.8556 T1046s2 0.7676 70 0.8564
T1041 0.6281 70 0.8242 T1047s2 0.9095 73 0.6968
T1042 0.3183 64 0.7411 T1050 0.7471 55 0.8066
T1043 0.2500 60 0.8706 T1052 0.8413 57 0.9346
T1047s1 0.6078 71 0.3425 T1053 0.5775 70 0.7230
T1049 0.7801 68 0.3608 T1054 0.7631 68 0.6132
T1061 0.6280 20 0.9219 T1055 0.5067 71 0.8741
T1064 0.0283 72 0.5806 T1056 0.7096 65 0.6009
T1074 0.2525 95 0.8841 T1057 0.8710 70 0.5501
T1090 0.7772 93 0.3272 T1058 0.7356 72 0.8535
T1093 0.3867 86 0.5120 T1060s2 0.7953 95 0.5456
T1094 0.3810 60 0.6739 T1060s3 0.8714 100 0.4873
T1096 0.2694 90 0.8718 T1065s1 0.6299 94 0.4982

T1065s2 0.7142 96 0.4616
T1067 0.2765 99 0.7583
T1068 0.3886 94 0.4558
T1070 0.7015 94 0.5685
T1076 0.9836 84 0.8101
T1078 0.5579 95 0.5094
T1079 0.8039 90 0.5340
T1080 0.0195 53 0.8689
T1082 0.3608 85 0.5309
T1083 0.6122 93 0.5156
T1084 0.5616 88 0.6393
T1087 0.4731 90 0.8674
T1089 0.7920 97 0.5366
T1091 0.6581 95 0.5619
T1092 0.6502 88 0.5023
T1095 0.6165 78 0.7232
T1099 0.2404 91 0.7228
T1100 0.5325 99 0.6577
T1101 0.9119 98 0.7111


